If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+20x+2=0
a = 24; b = 20; c = +2;
Δ = b2-4ac
Δ = 202-4·24·2
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{13}}{2*24}=\frac{-20-4\sqrt{13}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{13}}{2*24}=\frac{-20+4\sqrt{13}}{48} $
| 2.5=1.047^x | | 9x^2-8x+8=7 | | 3m2−4m−5=0 | | ¼(24x-12)=½(8-6x) | | -11x9=-2x+45 | | 2a+3a+4a=180 | | -6(x-2+4(3-6x)=36 | | 4^(9x)=2.7 | | P=7-0.3q | | 4x-12=-5x+63 | | 5=8+n÷4 | | 3×+8y=28 | | 5/x=14/35 | | 6x2+20x-360=0 | | 3+6n=-45 | | 3x+30=160 | | 30(100)=30x | | 36-6x=-18x-36 | | 123=11x+35 | | (3x-6)(8x+4)=0 | | g2–2g–3=0 | | (x+5)^2=64 | | 51-2y=37 | | 4+4y=40 | | 19+3y=31 | | -5.4/33.6=-9/n | | 28x+6=-3(1+7×)-7× | | 10/3x=36 | | 4y+3=71 | | 4y=3=71 | | 3x-45=20 | | 2y+2=24 |